If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3f-81f^2=0
a = -81; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-81)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-81}=\frac{-6}{-162} =1/27 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-81}=\frac{0}{-162} =0 $
| 4(x+3)=2x-12 | | 48x-27=0 | | 8+3x=5x–20 | | 5a=1/125 | | 4x+3=34=2x | | 1=1/2(1)+c | | 7b-2=2(b+4) | | (12x)2+2x+15=0 | | 12x2+2x+15=0 | | 12x+2x+15=0 | | 12x2+29x+15=0 | | 3(3t-3)=5(2t+1) | | 2-x-1/4=8 | | 2(x+5)=x+6 | | 2p-1=p+7 | | 5(p-4)=2p-7 | | 2^(6x+6)=1 | | 2^6x+6=1 | | 3-2p=6-3p | | x-4÷9=x÷10 | | (8+3e)e=2 | | x/4=6-x/2 | | 1/8+y=4/5 | | 5t-6=2t+3 | | x/8=3/2 | | -(-4)+(-3)-(-5)=x | | 2(d+3)+4=2 | | 3(4c-9)=9 | | 14b-35=19b | | 6m+22=5m | | 6^(-x)+6^(1-x)+6^(2-x)+6^(3-x)=259 | | 6^-x+6^(1-x)+6^(2-x)+6^(3-x)=259 |